Аннотация к рабочей программе

Физическая задача является одним из основных средств, на основе которых студенты усваивают физические законы, учатся использовать эти законы применительно к конкретным практическим ситуациям. Чаще всего именно при решении физических задач происходит акт понимания, качественный переход новый уровень репродуктивного на воспроизведения физических формул к их осмысленному применению. Физические задачи – основа для организации самостоятельной учебной деятельности студентов по физике в аудиторное время. Задачи являются как средством обучения, так и средством контроля: по решению учеником некоторого комплекса задач судят о конечном результате изучения того или иного раздела физики. Как правило, на этом взаимодействие преподавателя и ученика заканчивается. Учебная деятельность по решению типовых задач, в основном алгоритмическая, чаще всего не перерастает в творческую. Исключение составляют учащиеся, которые выходят на уровень решения олимпиадных задач.

Нормативные обоснования.

Рабочая программа разработана на основании:

- Федерального закона от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказа Министерства образования и науки Российской Федерации от 17 мая 2012 года № 413 «Об утверждении Федерального государственного стандарта среднего общего образования»;
- Приказа Министерства образования и науки Российской Федерации от 30 августа 2013 года № 1015 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования»;
- Приказа Министерства просвещения Российской Федерации от 28 декабря 2018 года №345 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего образования»;
- Приказа Министерства образования и науки Российской Федерации от 09 января 2014 года № 2 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
- Постановления Главного государственного санитарного врача РФ от 29.12.2010 № 189 «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях»;
- Приказа Минтруда России от 18 октября 2013 года №544н «Об утвер-

ждении профессионального стандарта «Педагог (педагогическая деятельность в сфере дошкольного, начального общего, основного общего, среднего общего образования) (воспитатель, учитель)»;

- Приказа Министерства образования и науки Российской Федерации от 30 марта 2016 года № 336 «Об утверждении перечня средств обучения и воспитания, необходимых для реализации образовательных программ начального общего, основного общего и среднего общего образования, соответствующих современным условиям обучения, необходимого при оснащении общеобразовательных организаций в целях реализации мероприятий по содействию созданию в субъектах Российской Федерации (исходя из прогнозируемой потребности) новых мест в общеобразовательных организациях, критериев его формирования и требований к функциональному оснащению, а также норматива стоимости оснащения одного места обучающегося указанными средствами обучения и воспитания";
- Письма Министерства образования и науки Российской Федерации от 01 апреля 2005 года № 03-417 «О перечне учебного и компьютерного оборудования для оснащения общеобразовательных учреждений»;
- Письма Департамента общего образования Министерства образования и науки Российской Федерации от 12 мая апрля 2011 года № 03-296 «Об организации внеурочной деятельностипри введении федерального государственного образовательного стандарта общего образования»;
- Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы (Утверждена Решением Коллегии Министерства просвещение Российской Федерации протокол от 3 декабря 2019 года № ПК-4 вн);
- Концепции развития физико-математического и естественнонаучного образования Томской области на 2019-2025 годы (Утверждена Распоряжением Департамента общего образования Томской области от 28 сентября 2018 года № 832-р).

Особенностями изложения содержания курса являются:

- единство и взаимосвязь всех разделов как результат последовательной детализации при изучении структуры вещества (от макро- до микромасштабов). В главе «Элементы астрофизики. Эволюция Вселенной» рассматривается обратная последовательность от меньших масштабов к большим, что обеспечивает внутреннее единство курса;
- отсутствие деления физики на классическую и современную (10 класс: специальная теория относительности рассматривается вслед за механикой Ньютона как ее обобщение на случай движения тел со скоростями, сравнимыми со скоростью света; 11 класс: квантовая теория определяет спектры излучения и поглощения высоких частот, исследует микромир);
- доказательность изложения материала, базирующаяся на простых математических методах и качественных оценках (позволяющих получить, например, в 10 классе выражение для силы трения покоя и для амплитуды

вынужденных колебаний маятника, оценить радиус черной дыры; в 11 классе оценить размер ядра, энергию связи электрона в атоме и нуклонов в ядре, критическую массу урана, величины зарядов кварков, число звезд в Галактике, примерный возраст Вселенной, параметры Вселенной в планковскую эпоху, критическую плотность Вселенной, относительный перевес вещества над антивеществом, массу Джинса, температуру и примерное время свечения Солнца, время возникновения реликтового излучения, плотность нейтронной звезды, число высокоразвитых цивилизаций во Вселенной);

- максимальное использование корректных физических моделей и аналогий (модели: 10 класс модели кристалла, электризации трением; 11 класс сверхпроводимости, космологическая модель Фридмана, модель пространства, искривленного гравитацией; аналогии: 10 класс движения частиц в однородном гравитационном и электростатическом полях; 11 класс распространения механических и электромагнитных волн, давления идеального и фотонного газов);
- обсуждение границ применимости всех изучаемых закономерностей (10 класс: законы Ньютона, Гука, Кулона, сложения скоростей; 11 класс: закон Ома, классическая теория электромагнитного излучения) и используемых моделей (материальная точка, идеальный газ и т. д.);
- использование и возможная интерпретация современных научных данных (11 класс: анизотропия реликтового излучения связывается с образованием астрономических структур (подобные исследования Джона Мазера и Джорджа Смута были удостоены Нобелевской премии по физике за 2006 год), на шести рисунках приведены в разных масштабах 3D-картинки Вселенной, полученные за последние годы с помощью космических телескопов);
- рассмотрение принципа действия современных технических устройств (10 класс: светокопировальной машины, электростатического фильтра для очистки воздуха от пыли, клавиатуры компьютера; 11 класс: детектора металлических предметов, поезда на магнитной подушке, световода), прикладное использование физических явлений (10 класс: явление электризации трением в дактилоскопии; 11 класс: электрического разряда в плазменном дисплее);
- общекультурный аспект физического знания, реализация идеи межпредметных связей (10 класс: симметрия в природе и живописи, упругие деформации в биологических тканях, физиологическое воздействие перегрузок на организм, существование электрического поля у рыб; 11 класс: физические принципы зрения, объяснение причин возникновения радиационных поясов Земли, выяснение вклада различных источников ионизирующего излучения в естественный радиационный фон, использование явления радиоактивного распада в изотопной хронологии, формулировка необходимых условий возникновения органической жизни на планете).

Система заданий, приведенных в учебниках, направлена на формирование готовности и способности к самостоятельной

информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников, умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей, умения применять знания для объяснения окружающих явлений, сохранения здоровья, обеспечения безопасности жизнедеятельности. Как в содержании учебного материала, так и в методическом аппарате учебников реализуется направленность на формирование у учащихся предметных, метапредметных и личностных результатов, универсальных действий и ключевых компетенций. В учебниках приведены темы проектов, задания, направленные на формирование исследовательские задания, информационных умений учащихся, в том числе при работе с электронными ресурсами и интернет-ресурсами. Существенное внимание в курсе уделяется вопросам методологии физики и гносеологии (овладению универсальными способами деятельности на примерах выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработке теоретических моделей процессов или явлений).

Цели обучения решению задач в средней школе следующие:

- ознакомить учащихся с наиболее общими приемами и методами решения типовых задач по физике;
- задач повышенной сложности, нестандартных задач, которые формируют физическое мышление учащихся, дают им соответствующие практические умения и навыки, сберегают время для получения правильного ответа при выполнении того или иного задания;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.

Задачи обучения:

- углубить знания учащихся по физике, научить их методически правильно и практически эффективно решать задачи.
- дать учащимся возможность реализовать и развить свой интерес к физике.
- предоставить учащимся возможность уточнить собственную готовность и способность осваивать в дальнейшем программу физики на повышенном уровне.
- создать учащимся условия для подготовки к ЕГЭ по физике, для поступления в класс физико-математического профиля.
- сформировать умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- сформировать собственную позицию по отношению к физической информации, получаемой из разных источников.

Период освоения дисциплины.

Всего на изучение факультативного курса «Трудные задачи по физике» в 10 - 11 классе выделяется 204 ч.: из них в 10 классе 68 ч. (2 ч. в неделю, 34 учебные недели) и в 11 классе 136 ч. (4 ч. в неделю, 34 учебные недели).

В соответствии с целями обучения физике учащихся средней школы и сформулированными выше принципами, положенными в основу курса физики, он имеет следующее содержание и структуру.

В **10** классе осуществляется решение задач по следующим разделам: «Механика», «Молекулярная физика и термодинамика», «Электростатика», «Постоянный электрический ток».

В программу курса физики **11** класса включено решение задач из следующих разделов: «Электродинамика, «Колебания и волны», «Оптика» и «Квантовая физика», «Строение Вселенной».

Принципы и подходы: методологической основой реализации программы является системно-деятельностный подход и ряд принципов:

- принцип вариативности;
- принцип паритетности;
- принцип результативности.

Такой подход предполагает:

- формирование готовности обучающихся к саморазвитию и непрерывному образованию;
- проектирование и конструирование развивающей образовательной среды организации, осуществляющей образовательную деятельность;
- активную учебно-познавательную деятельность обучающихся;
- построение образовательной деятельности с учетом индивидуальных, возрастных, психологических, физиологических особенностей и здоровья обучающихся.

Формы контроля и образовательные технологии.

В процессе реализации рабочей программы предполагается несколько видов контроля: начальный, текущий и итоговый.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные результаты обучения физике в средней школе являются:

в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя — ориентация на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности, к отстаиванию личного достоинства, собственного мнения, вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны, к саморазвитию и самовоспитанию в соответствии с общечеловеческими

ценностями и идеалами гражданского общества; принятие и реализацию ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью;

в сфере отношений обучающихся к России как к Родине (Отечеству) — российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн); формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской идентичности и главным фактором национального самоопределения; воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации;

в сфере отношений обучающихся к закону, государству и к гражданскому обществу – гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни; признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире; интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации; готовность обучающихся к конструктивному участию в принятии решений, затрагивающих права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности; приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного от- ношения к национальному достоинству людей, обучающихся чувствам, религиозным убеждениям; готовность идеологии противостоять экстремизма, национализма, ксенофобии, коррупции, дискриминации ПО социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;

в сфере отношений обучающихся с окружающими людьми – нравственное сознание и поведение на основе усвоения общечеловеческих

ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; ценностей, гуманистических осознанное, уважительное доброжелательное отношение К другому человеку, его мнению, мировоззрению; способность К сопереживанию формированию позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь; формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия); компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полез- ной, учебно-исследовательской, проектной и других видах деятельности;

в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре – мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научнотехническому творчеству, владение достоверной информацией о передовых мировой отечественной достижениях открытиях И И заинтересованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социальноэкономических процессов на состояние при- родной и социальной среды, ответственности за состояние природных ресурсов, умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности; эстетическое отношение к миру, готов- ность к эстетическому обустройству собственного быта;

в сфере отношений обучающихся к труду, в сфере социальноэкономических отношений – уважение всех форм собственности, готовность к защите своей собственности; осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое от- ношение к разным видам трудовой деятельности, готовность к самообслуживанию, включая обучение выполнение домашних обязанностей.

Метапредметные результаты обучения физике в средней школе представлены тремя группами универсальных учебных действий.

Регулятивные универсальные учебные действия Выпускник научится:

- самостоятельно определять цели, ставить, формулировать и решеть собственные задачи в образовательной деятельности и жизненных ситуациях;
- сопоставлять имеющиеся возможности и необходимые для достижения целиресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленной цели;
- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали.

Познавательные универсальные учебные действия Выпускник научится:

- критически оценивать учебную физическую задачу с целью выбора оптимального способа решения;
- использовать различные модельно-схематические средства для решения задач;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач.
 Коммуникативные универсальные учебные действия Выпускник научится:
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты обучения физике в средней школе Выпускник на базовом уровне *научится*:

- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;

- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Механика

- давать определения понятий: механическое движение, материальная точка, тело отсчета, система отсчета, траектория, равномерное прямолинейное движение, равноускоренное и равнозамедленное прямолинейное движение, равнопеременное движение, периодическое (вращательное и колебательное) движение, гармонические колебания, инерциальная система отсчета, инертность, сила тяжести, сила упругости, сила нормальной реакции опоры, сила натяжения, вес тела, сила трения покоя, сила трения скольжения, сила трения качения, замкнутая система, реактивное движение, устойчивое, неустойчивое и безразличное равновесие, потенциальные силы, консервативная система, абсолютно упругий и абсолютно неупругий удар, абсолютно твердое тело, рычаг, блок, вынужденные, свободные (собственные) и затухающие колебания, резонанс, волновой процесс, механическая волна, продольная механическая волна, поперечная механическая волна, гармоническая волна, поляризации, звуковая волна, высота звука, эффект Доплера, тембр и громкость звука;
- давать определения физических величин: импульс тела, работа силы, потенциальная, кинетическая и полная механическая энергия, мощность, первая и вторая космические скорости, момент силы, плечо силы, амплитуда колебаний, статическое смещение, длина волны; использовать для описания механического движения кинематические величины: радиус-вектор, перемещение, путь, средняя путевая скорость, мгновенная и относительная скорости, мгновенное и центростремительное ускорения, период и частота вращения и колебаний;

- формулировать: законы Ньютона, принцип суперпозиции сил, закон всемирного тяготения, закон Гука, законы сохранения импульса и энергии с учетом границ их применимости, условия статического равновесия для поступательного и вращательного движения;
- называть: основные положения кинематики;
- описывать: демонстрационные опыты Бойля, эксперименты по измерению ускорения свободного падения, опыт Кавендиша по измерению гравитационной постоянной, опыт по сохранению состояния покоя (опыт, подтверждающий закон инерции), эксперимент по измерению коэффициента трения скольжения; эксперимент по измерению с помощью эффекта Доплера скорости движущихся объектов: машин, астрономических объектов;
- воспроизводить: опыты Галилея для изучения явления свободного падения тел;
- описывать и воспроизводить: демонстрационные опыты по распространению продольных механических волн в пружине и в газе, поперечных механических волн в пружине и шнуре;
- делать выводы: об особенностях свободного падения тел в вакууме и в воздухе, о механизме возникновения силы упругости с помощью механической модели кристалла, о преимуществах использования энергетического подхода при решении ряда задач динамики;
- прогнозировать влияние невесомости на поведение космонавтов при длительных космических полетах, возможные варианты вынужденных колебаний одного и того же маятника в средах с разной плотностью;
- применять полученные знания для решения практических задач.

Молекулярная физика и термодинамика

- давать определения понятий: молекула, атом, изотоп, относительная атомная масса, дефект массы, моль, постоянная Авогадро, микроскопические и макроскопические параметры, стационарное равновесное состояние газа, температура идеального газа, абсолютный нуль температуры, изопроцесс, изотермический, изобарный и изохорный процессы, теплообмен, теплоизолированная система, адиабатный процесс, тепловой двигатель, замкнутый цикл, необратимый процесс;
- давать определения физических величин: внутренняя энергия, количество теплоты, КПД теплового двигателя;
- называть основные положения и основную физическую модель молекулярно-кинетической теории строения вещества;
- классифицировать агрегатные состояния вещества;
- характеризовать изменения структуры агрегатных состояний вещества при фазовых переходах;
- воспроизводить основное уравнение молекулярно-кинетической теории, закон Дальтона, уравнение Клапейрона–Менделеева, закон Бойля–Мариотта, закон Гей-Люссака, закон Шарля;
- формулировать: условия идеальности газа, первый и второй законы

термодинамики;

- использовать статистический подход для описания поведения совокупности большого числа частиц, включающий введение микроскопических и макроскопических параметров;
- описывать: демонстрационные эксперименты, позволяющие установить для газа взаимосвязь между его давлением, объемом, массой и температурой; эксперимент по измерению удельной теплоемкости вещества; опыты, иллюстрирующие изменение внутренней энергии тела при совершении работы;
- объяснять: газовые законы на основе молекулярно-кинетической теории строения вещества, особенность температуры как параметра состояния системы, принцип действия тепловых двигателей;
- делать вывод о том, что явление диффузии является необратимым процессом;
- применять полученные знания к объяснению явлений, наблюдаемых в природе и быту.

Электродинамика

- давать определения понятий: точечный электрический заряд, электризация тел, электрически изолированная система тел, электрическое поле, линии напряженности электростатического поля, свободные и связанные заряды, эквипотенциальная поверхность, конденсатор, проводники, диэлектрики, полупроводники, поляризация диэлектрика, электрический ток, источник тока, сторонние силы, сверхпроводимость, дырка, последовательное и параллельное соединения проводников, электролиты, электролитическая диссоциация, степень диссоциации, электролиз, ионизация, плазма, самостоятельный и несамостоятельный разряды, магнитное взаимодействие, линии магнитной индукции, однородное магнитное поле, собственная индукция, электромагнитная индукция, индукционный ток, само- индукция, магнитоэлектрическая индукция, токи замыкания и размыкания, трансформатор; собственная и примесная проводимость, донорные и акцепторные примеси, р-п-переход, запирающий слой, выпрямление переменного тока, транзистор, колебательный контур, резонанс в колебательном контуре, электромагнитная волна, бегущая гармоническая электромагнитная волна, плоскополяризованная (или линейно-поляризованная) электромагнитная волна, плоскость поляризации электромагнитной волны, фронт волны, луч, радиосвязь, модуляция и демодуляция сигнала, вторичные электромагнитные волны, монохроматическая волна, когерентные волны и источники, время и длина когерентности, просветление оптики;
- давать определения физических величин: электрический заряд, напряженность электростатического поля, потенциал электростатического поля, разность потенциалов, относительная диэлектрическая проницаемость среды, поверхностная плотность среды, электроемкость уединенного проводника, электроемкость конденсатора, сила тока, ЭДС, сопротивление проводника,

мощность электрического тока, энергия ионизации, вектор магнитной индукции, магнитный поток, сила Ампера, сила Лоренца, индуктивность контура, магнитная проницаемость среды, коэффициент трансформации, длина волны, поток энергии и плотность потока энергии электромагнитной волны, интенсивность электро- магнитной волны;

- объяснять: зависимость электроемкости плоского конденсатора от площади пластин и расстояния между ними, условия существования электрического тока, принципы передачи электроэнергии на большие расстояния, зависимость интенсивности электромагнитной волны от расстояния до источника излучения и его частоты, качественно явления от- ражения и преломления световых волн, явление полного внутреннего отражения;
- формулировать: закон сохранения электрического заряда и закон Кулона, границы их применимости; правило буравчика, принцип суперпозиции магнитных полей, правило левой руки, закон Ампера, закон Фарадея (электромагнитной индукции), правило Ленца, принцип Гюйгенса, закон отражения, закон преломления;
- описывать: демонстрационные эксперименты по электризации тел и объяснять их результаты; эксперимент по измерению электроемкости конденсатора; явление электро- статической индукции; демонстрационный опыт на последовательное и параллельное соединения проводников; тепловое действие электрического тока, передачу мощности от источника к потребителю; самостоятельно проведенный эксперимент по измерению силы тока и напряжения с помощью амперметра и вольтметра; фундаментальные физические опыты Эрстеда и Ампера, демонстрационные опыты Фарадея с катушками и постоянным магнитом, явление электро- магнитной индукции; механизм давления электромагнитной волны;
- приводить примеры использования явления электромагнитной индукции в современной технике: детекторе металла в аэропорту, в поезде на магнитной подушке, бытовых СВЧ-печах, записи и воспроизведении информации, в генераторах переменного тока;
- изучать движение заряженных частиц в магнитном поле;
- исследовать: электролиз с помощью законов Фарадея, механизм образования и структуру радиационных поясов Земли, прогнозировать и анализировать их влияние на жизнедеятельность в земных условиях;
- использовать законы Ома для однородного проводника и замкнутой цепи, закон Джоуля—Ленца для расчета электрических цепей;
- классифицировать диапазоны частот спектра электромагнитных волн;
- делать выводы о расположении дифракционных минимумов на экране за освещенной щелью;
- применять полученные знания для безопасного использования бытовых приборов и технических устройств светокопировальной машины, объяснения неизвестных ранее электрических явлений, решения практических задач.

Основы специальной теории относительности

- давать определения понятий: радиус Шварцшильда, горизонт событий, энергия покоя тела;
- формулировать постулаты специальной теории относительности и следствия из них;
- описывать принципиальную схему опыта Майкельсона-Морли;
- делать вывод, что скорость света максимально возможная скорость распространения любого взаимодействия;
- оценивать критический радиус черной дыры, энергию покоя частиц;
- объяснять условия, при которых происходит аннигиляция и рождение пары частиц.

Квантовая физика. Физика атома и атомного ядра

- давать определения понятий: фотоэффект, работа выхода, фотоэлектроны, фототок, корпускулярно-волновой дуализм, энергетический уровень, линейчатый спектр, спонтанное и индуцированное излучение, лазер, инверсная населенность энергетического уровня, метастабильное состояние, протонно-нейтронная модель ядра, изотопы, радиоактивность, альфа- и бетараспад, гамма-излучение, искусственная радиоактивность, термоядерный синтез, элементарные частицы, фундаментальные частицы, античастица, аннигиляция, лептонный заряд, переносчик взаимодействия, барионный заряд;
- давать определения физических величин: удельная энергия связи, период полураспада, активность радиоактивного вещества, энергетический выход ядерной реакции, коэффициент размножения нейтронов, критическая масса, доза поглощенного излучения;
- называть основные положения волновой теории света, квантовой гипотезы Планка, теории атома водорода;
- формулировать: законы фотоэффекта, постулаты Бора, закон сохранения барионного заряда;
- оценивать длину волны де Бройля, соответствующую движению электрона, кинетическую энергию электрона при фотоэффекте, длину волны света, испускаемого атомом водорода;
- описывать принципиальную схему опыта Резерфорда, предложившего планетарную модель атома;
- объяснять принцип действия лазера, ядерного реактора;
- сравнивать излучение лазера с излучением других источников света;
- объяснять способы обеспечения безопасности ядерных реакторов и AЭC;
- прогнозировать контролируемый естественный радиационный фон, а также рациональное природопользование при внедрении управляемого термоядерного синтеза (УТС);
- классифицировать элементарные частицы, подразделяя их на лептоны и адроны;
- описывать структуру адронов, цвет и аромат кварков;
- приводить примеры мезонов, гиперонов, глюонов.

Эволюция Вселенной

Предметные результаты освоения темы позволяют:

- давать определения понятий: астрономические структуры, планетная система, звезда, звездное скопление, галактики, скопление и сверхскопление галактик, Вселенная, белый карлик, нейтронная звезда, черная дыра, критическая плотность Вселенной;
- интерпретировать результаты наблюдений Хаббла о разбегании галактик;
- классифицировать основные периоды эволюции Вселенной после Большого взрыва;
- представлять последовательность образования первичного вещества во Вселенной;
- объяснять процесс эволюции звезд, образования и эволюции Солнечной системы;
- с помощью модели Фридмана представлять возможные сценарии эволюции Вселенной в будущем.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контсте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешно-

го усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности. Одним из путей повышения мотивации и эффективности учебной деятельности в средней школе является включение учащихся в учебно-исследовательскую и проектную дея- тельность, которая имеет следующие особенности:

- цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальны- ми. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подрост- ков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.
- В результате учебно-исследовательской и проектной деятельности выпускник получит представление:
- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры,

краудфандинговые структуры и т. п.).

Выпускник сможет:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);
- использовать основной алгоритм исследования при решении своих учебно-познавательных задач;
- использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, возникающих в культурной и социальной жизни;
- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.
- С точки зрения формирования универсальных учебных действий, в ходе освоения принципов учебно-исследовательской и проектной деятельностей выпускник научится:
- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.